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Abstract
Depolarized photon correlation spectra of two fragile glass-forming epoxy mol-
ecules of different molecular weights are reported. The correlation function of
the simplest molecule shows stretched-exponential behaviour, while deviations
from this form have been observed for the larger molecule, suggesting the
presence of a second, long-time power law. The relaxation dynamics is
suitably described for both systems in terms of a probabilistic approach
based on the tool of the limit theorems of probability theory. On the basis
of this theory, the presence of the long-time power law can be related to
the existence of intermolecular interactions, while the stretched-exponential
behaviour of simple molecules can be obtained in the case of negligible long-
range interactions.

(Some figures in this article are in colour only in the electronic version; see www.iop.org)

1. Introduction

The dynamics of supercooled systems is a fascinating and still not completely solved problem
of condensed matter physics. The supercooled liquid, i.e. a system which remains liquid below
the melting temperature for a long time before crystallization, is characterized by a dramatic
increase of its viscosity for temperature approaching the glass transition, accompanied by
nonexponential (stretched) relaxation processes [1]. Instead of the pure Debye response the
stretched-exponential decay law, described by the time-domain Kohlrausch–Williams–Watts
(KWW) relaxation function

φKWW(t) := exp

[
−

(
t

τKWW

)γ]
(1)

(where 0 < γ < 1 is the stretching parameter and τKWW > 0 is the relaxation time) is often
suggested to represent the experimental data (see [2] and references therein). However, this
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law is not universally valid since it appears that the supercooled systems usually follow the
two-power-law response [3], i.e. that the susceptibility function

χ(ω) = χ ′(ω) − iχ ′′(ω)

associated with the time-domain relaxation function φ(t) by the relation

χ(ω) =
∫ ∞

0
e−itω

(
−dφ(t)

dt

)
dt (2)

exhibits two fractional power laws in frequency, namely,

χ ′(ω) ∝ χ ′′(ω) ∝ (ωτ)n−1 for ωτ � 1

χ ′(0) − χ ′(ω) ∝ χ ′′(ω) ∝ (ωτ)m for ωτ � 1
(3)

with exponents 0 < n,m < 1 and relaxation time τ . Let us add that the KWW function (1)
leads to the high-frequency power law only, with

n = 1 − γ.

Different microscopic models have been proposed to explain the origin of the observed
nonexponential response; for example, the diffusion and trap depletion model [2] which
describes the KWW behaviour of both electronic and molecular relaxation, and the mode-
coupling theory [4] which gives a rationale for the dynamics of slightly supercooled systems
including the high-frequency (von Schweidler) power law of the structural relaxation.

In section 2 we present briefly a probabilistic approach to modelling relaxation phenomena
in complex systems, introduced and studied recently [5–12]. In this approach a general
formalism, applied to the analysis of the first passage of a system, allows us to treat relaxation
processes regardless of the precise nature of the interactions in a particular system—rather
as a result of some statistical rules that the large system follows as a whole. On the
other hand, the model relates the local random characteristics of complex systems to the
relaxation laws observed on the macroscopic level and hence it can provide a clue to better
understanding of the physical mechanism of relaxation by yielding strict conditions leading to
a particular response.

The formula for a time-domain relaxation function φ(t), derived in the framework of the
approach to relaxation phenomena presented [6], on the basis of limit theorems of probability
theory [13–17], may lead, for properly chosen parameters, to the two-power-law property (3)
[8]. The low-frequency power law appears when large-scale correlation is taken into account.
Its exponent m depends on both long- and short-range interactions while the high-frequency
power-law exponent n is determined by the latter only. When one neglects the long-range
interactions, the model yields the stretched-exponential decay law. The probabilistic approach
considered results, hence, in a formula for φ(t) that is a generalization of KWW function (1)
and, moreover, can be applied as a time-domain counterpart of the Havriliak–Negami (HN)
fitting function [18], commonly used for susceptibility data (however, the functions are not
exactly related by (2)).

In sections 3 and 4 we report the results of a depolarized light scattering study of
monoepoxide and diepoxide systems. Epoxy systems are particularly appropriate for the
study of the supercooled state of matter. They do not crystallize on cooling the system
below the melting point, give a strong depolarized signal and are available with different
molecular structures that allow us to study the influence of the structure on the dynamics of
the system. Here, to fit the experimental data obtained by the photon correlation technique,
the formula derived in the approach presented in section 2 has been used. A detailed analysis
of the shape of the relaxation function detected in the fitting procedure gives evidence of the
stretched-exponential decay-law response of monoepoxide and of the two-power-law response
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of diepoxide liquids that, on the basis of the theoretical considerations, suggests the presence
of long-range interactions in the relaxation dynamics of larger molecules.

2. Theoretical background

It is a well-known fact that the time-domain relaxation function has the meaning of a survival
probability of the nonequilibrium initial state of the system [3, 19–23]. Its value φ(t) is equal
to the probability that the irreversible transition of the system as a whole from its initial state
will take place after the time instant t ; that is,

φ(t) = Pr(θ̃ � t) (4)

where θ̃ is a waiting time of the system for the transition from the initial state. The waiting
time θ̃ of the system as a whole is determined by the first passage of the system from the initial
state [5, 9] and hence equal to

θ̃ = min(θ1N, . . . , θNN)

where N denotes the size of the system and the θiN , i = 1, . . . , N , are waiting times for the
transitions of particular objects taking part in the relaxation process. The distribution of the
waiting time θiN of the ith object may depend on both short- and long-range interactions. In
the model presented, the dependence is expressed in terms of the conditional distribution [6]

Pr(θiN � t |βi = b, ηi,N = s) = exp

(
− b

AN

min

(
t,

s

K

))
. (5)

Here the positive random variable βi is the relaxation rate representing the influence of the
local environment on the ith object, while

ηi,N = a−1
N max(ηi1, . . . , η

i
i−1, η

i
i+1, . . . , η

i
N )

where ηij is the time that the ith object waits for to get information about the relaxation process
of the j th one. This information can influence the process for the ith object, so ηi,N describes
the long-range interactions. The parameters AN , aN and K are positive constants. We assume
additionally that the waiting times θiN , as well as the relaxation rates βi and the times ηij , form
sequences of independent and identically distributed random variables and that the families
{βi} and {ηij } are independent of each other. Note that as a consequence of (5) one gets

Pr(θiN = ∞) =
〈
exp

(
−βiηi,N

KAN

)〉
�= 0

which reflects the fact that some objects do not undergo the transition (i.e. are somehow ‘frozen’
in the initial state) or that sometimes the initial state is an equilibrium state for the object. (Here
〈·〉 denotes the expected value.)

If we consider a relaxing system of large sizeN (in practice, it is enough to takeN ∼ 107),
the relaxation function φ(t) in equation (4) is approximately equal to the following first-
passage limit:

φFP (t) := lim
N→∞

Pr(min{θ1N, . . . , θNN } � t). (6)

At first sight the probability considered in (6) seems to be arbitrarily close to 0 for large
N . However, the waiting times θiN satisfying (5) may significantly alter with increase of the
system size N and therefore the limit in (6) can provide a nontrivial relaxation function for
some specific choices of sequences βi , ηij and the parameters of the model. Moreover, on the
basis of limit theorems of probability theory the possible nontrivial forms of the limit φFP (t)



376 S Bovelli et al

in equation (6), as well as the conditions (for the βi , ηij and the parameters) leading to them,
are strictly determined [10]. Among the formulae obtained, only

φFP (t) = exp

(
−1

k

∫ k(t/τ )α

0

(
1 − exp

(
−1

s

))
ds

)
(7)

with parameters τ, k > 0 and 0 < α < 1 can be chosen to describe the supercooled
(equilibrium) systems since (as was shown in [6]) the relaxation function φFP (t) given by (7)
is the only one which tends to 0 as t → ∞ and also has asymptotical behaviour of the form of
two fractional power laws in time:

−dφ

dt
∝

{
(t/τ )−n for t � τ

(t/τ )−m−1 for t � τ

with power-law coefficients equal to

n = 1 − α and m = α

k
.

In the case k > α one gets that 0 < n,m < 1 and, hence, that the susceptibility function
χFP (ω), associated with relaxation function (7) by means of relation (2) satisfies the two-
power-law condition (3) in frequency [8]. So, the asymptotical behaviour of χFP (ω) is like
that of the HN function, one of the most popular empirical functions used to fit the response of
supercooled systems [24]. χFP (ω) and the HN functions were compared numerically in [25]
and it appeared that their shapes resemble each other, so χFP (ω) should fit reasonably well
any susceptibility data that can be represented by the HN formula. Consequently, φFP (t) of
the form (7) is worth taking into considerations as a fitting function in the case of time-domain
experiments; the more so since applying the HN method in this case needs some special, rather
complicated numerical procedures (see e.g. [26, 27]) while formula (7) can be used in a more
direct way. Let us add that the model presented (originally introduced to describe dielectric
relaxation [6]) was adopted recently to explain the scaling laws observed in financial data and
formula (7) was successfully used to fit positive daily returns of different indices [28], which
shows its wide application.

The conditions for relaxation rates βi and waiting times ηij providing the form (7) of the
limit in (6) can be formulated as the following scaling properties [6]:

lim
b→∞

Pr(βi � xb)

Pr(βi � b)
= x−α1 for any x > 0 (8)

and

lim
s→∞

Pr(ηij � xs)

Pr(ηij � s)
= x−α2 for any x > 0 (9)

for 0 < α1, α2 < 1 such that α1 = α2 = α. Moreover, one obtains the following relations for
the parameters: k = Kα , AN = N1/αL(N) with a function L slowly varying at ∞ [13] and
aN = inf{t :Pr(ηij � t) � 1/(N − 1)}.

One should add that the case of different exponents α1 and α2 in conditions (8) and (9) was
discussed in [6] and it was shown that the limiting function obtained in this case either tends
to some positive value at ∞ or does not possess the long-time (low-frequency) power-law
property. Therefore this case does not relate to the supercooled systems.

The parameter K in (5), and so k = Kα in (7), reflects the intensity of the influence
of long-range interactions. It is easy to derive analytically that as the parameter k tends
to 0, formula (7) gives KWW function (1) with γ = α and τKWW = τ . On the other
hand, k ≈ 0 corresponds to K ≈ 0 and, consequently, to the right-hand side of (5) of the
exponential form exp(−bt/AN). The distribution of θiN does not depend on ηij in this case,
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so the model presented with parameter K close to 0 can be used to describe systems with
negligible intermolecular interactions. Moreover, relaxation function (6), introduced for large
systems, can be expressed then in terms of relaxation rates βi only, namely as

φFP,k=0(t) =
〈
exp(−β̃t)

〉
where β̃ = lim

N→∞
1

AN

N∑
i=1

βi (10)

and it can be shown in the framework of probability theory that the relaxation function in (10)
cannot take a form other than

φFP,k=0(t) = exp(−(At)a)

for some A > 0 and 0 < a � 1. For a = 1 the function obtained corresponds to the
classical exponential response while for a < 1 it can be recognized as KWW function (1)
with τKWW = 1/A and γ = a. This latter result, which is in agreement with the analytically
obtained limit of function (7) for k → 0, is a consequence of a nontrivial limit theorem derived
in the theory of Lévy-stable probability distributions [13–16] and it appears if (and only if )
the scaling condition (8) for the relaxation rates βi is fulfilled with α1 = a. The classical
exponential form (a = 1) is the limiting case if the expected value of βi is finite, which follows
from the law of large numbers.

3. Experiment

Two commercial samples of epoxy compounds have been used for this study, namely, the
monoepoxide phenyl-glycidyl ether (PGE) produced by Aldrich with molecular weight of
150.18 g mol−1 and the diepoxide diglycidyl ether of bisphenol-A (DGEBA) produced by
Shell Company with a molecular weight of 380 g mol−1. The samples were filtered through a
0.22 µm Millipore filter and distilled into dust-free light scattering round cells (10 mm inner
diameter), which were flame sealed afterwards. These samples kept at room temperature for
several months showed no trace of crystallization. A Brookhaven BI-9000AT Correlator was
used for depolarized photon correlation spectroscopy (PCS) [29] measurements in the range
10−6–10 s. The 90◦ scattering configuration was exploited for both samples. Back-scattering
(180◦ configuration) measurements were previously taken for the DGEBA sample that were
consistent with the 90◦ ones and the results were reported and discussed in [30]. We use here
the 90◦ configuration since it gives a better signal-to-noise ratio, which is important for the
detailed study of the shape of the relaxation function.

Table 1. Relaxation times and stretching parameters calculated by fitting the PGE spectra of figure 1
by means of KWW formula (1).

T (K) τKWW (µs) γ

197.7 17490 ± 40 0.61 ± 0.01
200.6 2927 ± 6 0.61 ± 0.01
203.4 547.4 ± 1.6 0.62 ± 0.01
206.2 125.6 ± 0.8 0.61 ± 0.01
209.0 29.4 ± 0.7 0.61 ± 0.01
211.5 8.6 ± 1.1 0.59 ± 0.04
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Figure 1. Photon correlation spectra of PGE. The temperatures, from left to right, are 211.5, 209,
206.2, 203.4, 200.6 and 197.7 K. The full lines are obtained by fitting the spectra by means of
KWW formula (1). In the inset, the chemical structure of PGE is shown.

4. Results and discussion

Figure 1 shows spectra taken at different temperatures for PGE. The full lines are obtained by
fitting the spectra by means of KWW relaxation function (1). The values of the parameters
obtained by the fit are reported in table 1. In the present case of DLS spectra of PGE, the KWW
function is revealed to be completely adequate to fit the spectra, within the experimental error.
This is better shown in figure 2(a) for T = 203.4 K, where the log scale emphasizes the small-
amplitude long-time behaviour. Moreover, in figure 2(b) the residuals are reported, together
with the expected error. The residuals do not show any marked trend as a function of time
and their values lie, on average, within the expected error. It is worth noting the utility of
the estimated error for checking the goodness of the fit. In the case of PCS measurements,
the determination of this error requires particular care, due to the presence of correlated error
coming from the photon correlation procedure. For this work, we have adopted the procedure
outlined in [31].

For the sake of the comparison, the function of form (7) was also used for fitting the
PGE spectrum of figure 2(a) under discussion. We have obtained α = 0.617, τ = 547 and
k < 0.1 with residuals comparable with those of the KWW fitting (see figure 2(c)). Let us
note that for such a small value of parameter k, function (7) is close to the KWW function, as
was shown in section 2, and hence the two fitting procedures are consistent in indicating the
stretched-exponential decay law to be followed by PGE.

In figure 3 the spectra taken from DGEBA are reported at five different temperatures
together with the fitting curves of form (7). It has to be stressed that KWW function (1),
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Figure 2. (a) The PCS spectrum of PGE at T = 203.4 K, where the log scale emphasizes the
small-amplitude long-time behaviour. The full line is obtained by fitting the spectrum by means
of KWW formula (1). (b) Residuals of the fit by KWW formula (1) (thin line) together with the
expected error (thick lines). (c) Residuals of the fit by formula (7) (thin line) together with the
expected error (thick lines).

although it represents the main features of the measured spectra, fails in a more quantitative
comparison. In contrast, function (7) is able to represent, within the experimental error, the
spectra over the whole time and temperature region investigated. In order to provide evidence
of the difference between the fitting functions (1) and (7) discussed here, we have reported in
figure 4(a) the spectrum at T = 267.1 K on a log scale with both fitting curves. The analysis of
the residuals shows a well-defined oscillatory behaviour which reveals that the KWW formula
does not adequately represent the response function (see figure 4(b)). Moreover the long-time
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part of the spectrum appears to be more stretched than the KWW function, suggesting the
presence of the second power-law regime. In this case, function (7), which explicitly takes
into account the intermolecular interactions, is more adequate to describe the data (see the
residuals plot in figure 4(c)). The parameters of the fit are presented in table 2.

O CH2 CH CH2

OH

OH2CHCH2C

O

C

CH3

CH3

O CH2 CH CH2

O

O C

CH3

CH3

n=0.1

DGEBA

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8
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|φ
(t

)|2

log10 [t(µs)]

Figure 3. Photon correlation spectra of DGEBA. The temperatures, from left to right, are 274.9,
272.2, 267.1, 262.8 and 261.2 K. The full lines are obtained by fitting the spectra by formula (7).
In the inset, the chemical structure of DGEBA is shown.

Table 2. Relaxation parameters of DGEBA calculated by fitting the spectra of figure 3 by means
of formulae (1) and (7).

T (K) τKWW (µs) γ τ (µs) α m = α/k

261.2 80770 0.53 71400 ± 1500 0.57 ± 0.01 0.91 ± 0.02
262.8 30246 0.52 26600 ± 600 0.57 ± 0.01 0.90 ± 0.04
267.1 3000 0.54 2730 ± 70 0.61 ± 0.01 0.98 ± 0.02
272.2 169 0.55 154 ± 9 0.69 ± 0.02 0.98 ± 0.03
274.9 52 0.51 50 ± 12 0.66 ± 0.02 0.95 ± 0.02

The two-power-law response, obtained for DGEBA, is typical of macromolecules and of
polymeric systems, where usually the HN empirical function is used to fit the susceptibility data
[24,32]. The HN function is a phenomenological law which was introduced to interpolate the
high- and low-frequency power laws experimentally observed in different (electric, mechanical
etc) relaxation experiments. The existence of such power laws was tentatively explained in
terms of different molecular mechanisms. The more traditional one is that of independent
relaxing species with random relaxation rates. A more recent approach [19] has proposed
a cluster model where, in a hierarchical scheme, the faster degrees of freedom successively
constrain the slower ones. On this basis, models more strictly related to the morphology and
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Figure 4. (a) The spectrum of DGEBA at 267.1 K. The thin line is the best fit of the data by KWW
function (1). The thick line is the fit by means of formula (7). (b) Residuals of the fit by KWW
formula (1) (thin line) together with the expected error (thick lines). (c) Residuals of the fit by
formula (7) (thin line) together with the expected error (thick lines).

dynamics of macromolecules and polymers have been also proposed [32].
The probabilistic approach presented in this paper starts from more fundamental properties

of disordered systems, considering the effect of the local environment on the relaxation rates
βi , and the intermolecular interactions on the waiting times ηij , both being random variables.
Two scaling properties, equations (8) and (9), of the distributions of βi and ηij indicate in the
case of equal scaling exponents that the relaxation function takes form (7). In the framework
of the proposed model, the long-time power-law behaviour of DGEBA can be attributed to
the presence of long-range interactions. The origins of stronger intermolecular interactions in
DGEBA with respect to PGE can be found in the more complex structure of the first molecule
(see the insets of figures 1 and 3), and are probably related to the higher steric hindrance in
the rotation of single molecules. A change of short- and long-range interactions is expected
to be reflected in a change of the shape parameters α and k. In particular, a reduction of k
(increase of the low-frequency exponent m = α/k) is expected for increasing temperature,
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when the role of interparticle interactions generally reduces. This effect can be seen both for
DGEBA, comparing the results obtained by different light scattering techniques [30], and,
more generally, for high-molecular-weight glass-forming systems [32]. These results help us
to clarify the physical meaning of the coefficients α and k introduced by the theory, even if a
more quantitative link between their values and molecular properties has still to be achieved.

In conclusion, light scattering from the two glass formers PGE and DGEBA has been
successfully interpreted by means of a probabilistic approach based on the tool of limit theorems
of probability theory. The transition from the KWW to the two-power-law behaviour has been
evidenced for increased molecular complexity, which, in the proposed theory, has been related
to an increase of long-range interaction.
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